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1. 

A technique is described for the reconstruction of the blockage area function
of the duct from eigenfrequency and anti-resonance frequency shifts determined
by using a single pressure response measurement in a finite length duct under one
set of duct termination boundary conditions. It builds upon the earlier work of
Wu and Fricke [1] which in its turn led on from initial research by
Antonopoulos-Domis [2] into blockage detection in the subassembly wrappers of
cooling systems for nuclear reactors. Wu and Fricke developed an inverse acoustic
perturbation technique for reconstruction of the blockage area function within a
finite length duct based upon measured blockage induced duct eigenfrequency
shifts determined from pressure response measurements which required the use of
two sets of termination boundary conditions.

While the blockage area function reconstruction results obtained by application
of the Wu and Fricke method showed excellent accuracy the method could be
deemed impractical, especially in the case of flow ducts, due to the requirement
that acoustic pressure measurements be recorded under two separate sets of duct
termination boundary conditions, each of which requires the closure of at least
one end of the duct with a rigid termination.

The method described in this paper is made possible by the use of high noise
immunity maximum length sequence techniques to reveal the locations of the
anti-resonance residual pressures in the measured frequency response. The
improved blockage reconstruction method is a considerable advance on the two
boundary condition technique especially with a view to practical condition
monitoring of flow ducts.

2.       

The one-dimensional acoustic equation governing the direct problem for the
blockage perturbed duct is a formulation of the classic Webster horn equation for
the lossless tract,

p0(x)+ k2p(x)=−
A'(x)
A(x)

p'(x), (1)
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where A(x) is the variation of cross-sectional area function of the duct with
longitudinal distance x.

The solution to equation (1) for the blockage perturbed finite length duct was
formulated by Wu and Fricke [1] using perturbation theory [3]. By using their
approach the new eigenfunction p(x) and the new modal wavenumber k of the
perturbed nth mode could be expressed in terms of the unperturbed modal
solutions Fn (x) and kn as

p(x)=Fn (x)+ o s
m$ n

cmnFm (x)+O(o)2 (2)

and

k2 = k2
n + oxn +O(o)2, (3)

where Fn (x) and k2
n are respectively the eigenfunction and eigenvalue solutions for

the unblocked duct, o is the perturbation coefficient, xn is the blockage induced
shift in eigenvalue for the nth mode, and O(o2) is the higher order perturbation
term. The terms in equation (2) represent a Fourier expansion of the other duct
eigenfunctions which describes the perturbation in the mode shape.

The applied perturbation analysis, valid for obstacles of small cross section,
assumes a first order approach and as such equations (2) and (3) can now be
substituted into equation (1), less the higher order perturbation terms. Now, upon
looking at the right side of equation (1), it may be expressed as a spatial Fourier
series of all the unblocked eigenfunctions of the duct [including Fn (x)], where each
spatial Fourier component bm is given by

bm =02
L1 g

L

0

−
A'(x)
A(x)

F'mFm (x) dx. (4)

With the left side of equation (1) expanded in terms of equations (2) and (3),
expressing the right side as a Fourier series of Fm (x) as in equation (4) and
equating coefficients of o yields an expression for the eigenvalue shift due to
blockage perturbation xn namely

xn = bn , (5)

where n=1, 2, 3, . . . are the longitudinal mode orders of the duct.
Consider now a rigid walled duct length L with one closed rigid termination and

one open termination. The duct is excited by a driver mounted at x=0, which
is the closed rigid end. The spatial eigenfunction Fn (x) and wavenumber kn are
given by

Fn (x)= cos [(2n−1)px/(2L)], kn =[(2n−1)p/(2L)]. (6, 7)

Substituting equation (6) into equation (4) and using a simple trigonometric
identity leads to collapse of the term F'n (x)Fn (x) into a single sine expression. The
exact form of bn in equation (4) depends on the form of the eigenfunction Fn (x)
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in equation (6) for the unblocked finite duct. For the closed/open termination
conditions described for the duct of length L,

bn =0(2n−1)p
2L2 1 g

L

0

A'(x)
A(x)

sin 0(2n−1)px
L 1 dx, n=1, 2, 3, . . . . (8)

Substituting xn in equation (5) for bn in equation (8), following some algebraic
manipulation, yields

xn =
(2n−1)p

4L
a2n−1, n=1, 2, 3, . . . , (9)

where a2n−1 is the (2n−1)th Fourier coefficient of the expansion [overlength L]
of A'(x)/A(x). The full analysis has been given by Wu and Fricke [1] using the
unperturbed cosine eigenfunction Fn (x) and wavenumber kn at resonance from
equations (6) and (7).

The above procedure yields only the odd components of the Fourier series and
it is necessary to devise a procedure for obtaining the even components, thus
completing the expansion of A'(x)/A(x). In the Wu and Fricke work this was
achieved by applying the previously described perturbation analysis to the
blockage perturbed duct eigenfrequency shifts obtained under a second set of
boundary conditions: i.e., for the closed-closed duct. It is this requirement to
modify boundary conditions which limits the practical application of their work.

However, it can be shown that the completion of the Fourier expansion is
possible by using measurements obtained under a single set of boundary
conditions. For the closed–open duct discussed above, as the driven frequency
approaches the anti-resonance condition, the longitudinal pressure distribution
will tend to a sine function (albeit one with a very small amplitude) with its origin
at x=0. At this limit, the theoretical distribution of pressure, F(a)n (x), that exists
in the duct, and the associated wavenumber k(a)n will be given by

F(a)n (x)= sin [npx/L], k(a)n (x)= (np/L), (10, 11)

where f(a)n = ck(a)n /(2p) describes the position of the residual or anti-resonance
pressures in the duct pressure frequency response function. Upon using the
previous argument, the relationship in equation (5) now becomes

m(a)n = bn , (12)

where m(a)n is the shift in the value of k2
(a)n at anti-resonance in the pressure response

function. The new formulation of the duct pressure function F(a)n (x) from equation
(10) can now be substituted into equation (4). Expanding equation (4) and using
an argument similar to the one cited previously yields

m(a)n = bn =−(np/2L)a2n , (13)

where a2n is the (2n)th Fourier coefficient of the expansion [overlength L] of
A'(x)/A(x).

Thus an expression for the unique solution of A'(x)/A(x) may be obtained in
terms of xn and m(a)n by using equations (9) and (13). With further integration to
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obtain the form of A(x), the blockage area function Ab (x)/A0(x)= (A0(x) −
A(x))/A0(x), where A0(x) is the area function of the unblocked duct, is given by

Ab (x)/A0(x)=61−exp$ s
n=1 $Le

np%
2

m(a)n cos 02npx
Le 1

− s
n=1 $ 2Le

(2n−1)p%
2

xn cos 0(2n−1)px
Le 1− a0%7, (14)

where a0 is an added DC component equal to the ratio of blockage to duct volume
[1], and Le is the end-corrected length of the closed/open condition duct. The
blockage area function in equation (14) is thus described by using the eigenvalue
shifts xn and anti-resonance value shifts m(a)n obtained under a single set of
boundary conditions.

3.  

The above analysis suggests that information similar to that obtained by Wu
and Fricke with two sets of duct termination conditions can be achieved with one
set of termination conditions from determination of the frequency shifts of
pressure maxima and minima. However, determination of the precise frequencies
corresponding to pressure minima by using a conventional swept sine technique
would be affected by background noise. This would have the effect of making the
minima very poorly defined and thus make it impossible to locate the frequency
with any accuracy. In this work background noise problems were overcome by
making measurements with a deterministic maximum length sequence used as the
signal driving the loudspeaker.

The experimental set-up is shown in Figure 1. The duct was made of rigid walled
polypropylene and was 2 m in length and 0·1 m in diameter. The induct blockage
was made of hardwood and had the dimensions 45 mm square by 500 mm long.
The test duct was excited by using a 16 384 point maximum length sequence of
2 kHz bandwidth. The sequence, generated in the acoustics analysis system
MLSSA, was averaged over a period of 1 min. The pressure response within the

Figure 1. Experimental set-up showing blockage perturbed condition for a closed/open duct.
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Figure 2. Unblocked (——) and blockage perturbed ( · · · · · ) duct transfer functions.

duct was recorded via a 1/4 in. pressure response microphone wall mounted close
to the driver, and the captured signal was Fast Hadamard Transformed to yield
the impulse response of the duct system. Once the impulse response had been
processed the first 8192 points in the time history were Fast Fourier Transformed
to give the transfer function frequency response within the duct at 1 Hz resolution.
The analysis of this initial part of the time domain captured the entire impulse
response while rejecting much of the extraneous noise which was evenly spread
over the time history. As a result an appreciable gain in signal to noise ratio was
realized. The resulting measured transfer function revealed the residuals, or zeros,
as sharp points in the frequency spectrum. This was in contrast to previous work
[1], where the background noise distortion would have precluded location of the
residual pressures. The transfer function frequency response between 1 and 500 Hz
for the unblocked and partially blocked duct are shown in Figure 2. The first six

Figure 3. Blockage area reconstruction obtained by using closed/open duct eigenvalue shifts xn

alone. ——, Reconstruction; · · · · · , actual.
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Figure 4. As Figure 3 but reconstruction obtained by using anti-resonance value shifts m(a)n alone.

eigenfrequency poles and the first five anti-resonance zeros of the unblocked and
blockage perturbed duct are clearly discernible.

To obtain the blockage area function the first fifteen poles and first fifteen zeros
of the transfer functions for the blocked and unblocked closed/open duct were
utilized. An iterative Matlab routine was employed to select the poles and zeros
and the resulting shifts xn and m(a)n were determined and subsequently processed
by using equation (14).

4. 

The DC corrected reconstruction results for polar shift and zero shift results for
a closed open duct similar to one of the configurations used by Wu and Fricke
[1] are given in Figures 3 and 4, respectively. The true blockage function is shown

Figure 5. As Figures 3 and 4 but reconstruction obtained by using both xn s and m(a)n s.
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by the dotted line and it can be seen that neither single set of shifts can describe
the blockage area function within the duct as each yields two apparent blockages.
However, applying both sets of shifts in equation (14) yields the single blockage
within the duct as shown in Figure 5.

This approach has also been successfully applied to ducts incorporating multiple
obstacles, blockages added to ducts that have non-uniform area function A(x) and
ducts of increased length and cross-sectional area ratio. Further reconstructions
have been realized for a finite element model of an open/open end duct excited
at the walls close to one of the duct terminations. This particular result paves the
way towards the development of an unobtrusive condition monitoring system for
flow ducts.

5. 

A technique for determining the blockage area function of a duct by using a
single set of duct termination conditions has been proposed. This technique has
been tested by means of measurements made by using a finite duct of length 2 m
and diameter 0·1 m with closed/open end conditions and excited via a maximum
length sequence amplified through a driver mounted at the closed end. The
pressure response for the unblocked duct and that of the duct incorporating a
small blockage was measured via a wall mounted microphone close to the driver
end. Due to the high noise immunity of the maximum length sequence technique
the locations of the pressure residuals in the frequency response of the duct could
be determined along with the modal poles. It was found that the shifts in the poles
and zeros of the measured transfer function for the single set of boundary
conditions could be employed to obtain a spatial Fourier series describing the area
function of the blockage within the duct. The method is an advancement on
previous techniques [1] developed from research into nuclear reactor cooling
systems [2], where measurements under multiple sets of boundary conditions were
required to determine the blockage area function within a duct.
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